top of page

Volland Group @ LRC

Current Members

Group Focus

In the last decades symbiosis went from a biological curiosity to a ubiquitous strategy that has shaped life as we know it today. From the human gut to coral reefs, microbial symbiosis is a central mechanism allowing the establishment and maintenance of complex ecosystems. The breakdown of symbiosis may have very deleterious effects. Gut dysbiosis in humans, for instance, leads to many chronic and degenerative diseases, and coral bleaching leads to the loss of entire ecosystems with catastrophic ecological and economical consequences. I am interested in chemosynthetic symbioses, a type of partnership where invertebrate animals and protists host bacteria capable of harnessing the energy stored in chemical compounds to fix carbon. Even while being ubiquitous and evolutionary relevant, chemosynthetic symbioses have received far less attention than heterotrophic (e.g. rumen) and photosynthetic (e.g. coral) symbioses. Using simple models (one host + one symbiont species) I study how cooperation (rather than competition) can be a driving force for the evolution of species. My overarching goal is to tackle the following key questions about symbiosis:  

  • How is symbiosis established?

  • How is symbiosis maintained?

  • What is the extent of mutualistic symbiosis in the biosphere?

  • What leads to the breakdown of symbiosis? 

photoJMV_edited.jpg

Jean-Marie Volland (PI)

3.jpeg

Paul-Emile Contarini

Ph.D. student jointly with Olivier Gros

(T. magnifica project)

Publications

  1. Paredes G, Viehboeck T, Lee R, Palatinszky M, Mausz MA, Reipert S, Schintlmeister A, Volland JM, Hirschfeld C, Wagner M, Berry D, Markert S, Bulgheresi S, König L. 2020. Anaerobic sulfur oxidation underlies adaptation of a chemosynthetic symbiont to oxic-anoxic interfaces. BioRxiv doi: https://doi.org/10.1101/2020.03.17.994798

  2. Seah BKB, Volland JM, Leisch N, Schwaha T, Dubilier N, Gruber-Vodicka HR. 2020. Kentrophoros magnus sp. nov. (Ciliophora, Karyorelictea), a new flagship species of marine interstitial ciliates. BioRxiv doi: https://doi.org/10.1101/2020.03.19.998534:

  3. Bright M, Espada-Hinojosa S, Volland, JM, Drexel J, Kesting J, Kolar I, Morchner D, Nussbaumer A, Ott J, Scharhauser F, Schuster L, Zambalos HC and Nemeschkal HL. 2019 Thiotrophic bacterial symbiont induces polyphenism in giant ciliate host Zoothamnium niveum. Scientific Reports, 9 (1), art. no. 15081

  4. Volland JM, Schintlmeister A, Zambalos H, Reipert S, Mozetič P, Espada-Hinojosa S, Turk V, Wagner M, Bright M. 2018. NanoSIMS and tissue autoradiography reveal symbiont carbon fixation and organic carbon transfer to giant ciliate host. ISME Journal, 12 (3), pp. 714-727.

  5. Volland JM, Bustamante P, Aldana Aranda D, Gros O. 2018. The potential role of spherocrystals in the detoxification of essential trace metals following exposure to Cu and Zn in the fighting conch Strombus (Lobatus) pugilis. BioMetals, 31 (4), pp. 627-637.

  6. Tsao HF, Scheikl U, Volland JM, Köhsler M, Bright M, Walochnik J, Horn M. 2017. 'Candidatus Cochliophilus cryoturris' (Coxiellaceae), a symbiont of the testate amoeba Cochliopodium minus. Scientific Reports 7 (1): art. no. 3394.

  7. Seah BKB, Schwaha T, Volland JM, Huettel B, Dubilier N, Gruber-Vodicka HR. 2017. Specificity in diversity: Single origin of a widespread ciliate-bacteria symbiosis. Proceedings of the Royal Society B: Biological Sciences, 284 (1858).

  8. Szabo G, Schulz F, Toenshoff E, Volland JM, Finkel O, Belkin S, Horn M. 2017 Convergent patterns in the evolution of mealybug symbioses involving different intrabacterial symbionts. ISME journal 11 (3): 715-726.  

  9. Bayer B, Vojvoda J, Offre P, Alves RJE, Elisabeth NH, Garcia JAL, Volland JM, Srivastava A, Schleper C and Herndl GJ. 2016 Physiological and genomic characterization of two novel marine thaumarchaeal isolates indicate putative niche differentiation. ISME journal. 10 (5): 1051-1063.

  10. Enriquez-Diaz MR, Volland JM, Chavez-Villegas JF, Aldana-Aranda D and Gros O. 2014 Development of the planktotrophic veligers and newly metamorphosed juveniles of Strombus pugilis (mollusca: gastropoda). Journal of Molluscan Studies. 81 (3): 335-344

  11. Bright M, Espada-Hinojosa S, Lagkouvardos I and Volland JM. 2014 The giant ciliate Zoothamnium niveum and its thiotrophic epibiont Candidatus Thiobios Zoothamnicoli: a model system to study interspecies cooperation. Frontiers in Microbiology – Microbial symbioses. 5: 145.

  12. Volland JM and Gros O. 2012. Cytochemical investigation of the digestive gland of two Strombidae species (Strombus gigas and S. pugilis) in relation to the nutrition. Microscopy research and Techniques. 75: 1353-1360.

  13. Volland JM, Lechaire JP, Frebourg G, Aldana Aranda D, Ramdine G and Gros O. 2012. Insight of EDX analysis and EFTEM: Are spherocrystals located in Strombidae digestive gland implied in detoxification of trace-metals. Microscopy research and Techniques. 75: 425-432.

  14. Volland JM, Frenkiel L, Aldana Aranda D. and Gros O. 2010. Occurrence of Sporozoa-like microorganisms in the digestive gland of various species of Strombidae. Journal of Molluscan Studies 76 (2): 196-198.

bottom of page